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About Me

Melanga Dissanayake
Senior Software Engineer - EPAM System (Shenzhen)

* Over 10 years of enterprise application development experience

* Focused on financial domain
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Big data is like teenage sex:
everyone talks about it,
nobody knows how to do it,
everyone thinks everyone else is
doing it, so everyone claims they
are doing it...

(Dan Ariely)
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What is Big Data?
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What is Big Data?

Volume

» Petabytes
e Records

e Transactions
e Tables, files

o Structured
e Unstructured

e Semi structured
o All the above

e Batch
e Near Time
e Real Time
e Streams

Velocity
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What is Big Data?

* Traditional Queue

» Website Activity Tracking
* Metrics - Operational data
+ Log Aggregation

 Stream Processing

* Event Sourcing

« Commit Log
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Where do we put Big Data?

* Traditional Database?

 Flat files?
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HDFS

« HDFS - Hadoop Distributed File System
- Highly fault-tolerant
- Java based file system
* Runs on commodity hardware

 Concurrent data access (Coordinated by YARN)
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How do we put these Big Data
« CSV file dump

* ETL
* Other messaging systems (ActiveMQ, RabbitMQ, etc)
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Data pipeliens

Client »| Backend

Data pipeline starts like this

Source: Cloudera
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Data pipeliens

Client Backend

Client

Then we reuse them
Client

Client

Source: Cloudera
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Data pipeliens

Client Backend

Client Backend

Then we add more backends
Client

Client

Source: Cloudera
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Data pipeliens

Client Backend
Client Backend
Client Backend
Client Backend

Then it starts to look like this

Source: Cloudera
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Data pipeliens

Client Backend
Client Backend
Client Backend
Client Backend

with may be some of this

Source: Cloudera
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Data pipeliens

ended up having

Source: LinkedIn
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What is Apache Kafka

&3 kafka

Apache Kafka is an open-source message broker rethought
as a distributed commit log.

Developed using Scala and heavily influenced by transaction
logs.
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Little bit of history

Apache Kafka was initially developed by Linked[f}] to pipeline
the data across various internal systems.

Developed as a an internal project in early 2011 project was
released under open-source license.

Graduated from Apache Incubator on October 2012.
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Kafka in nutshell

producer producer producer

kafka
cluster

consumer consumer consumer




Kafka Architecture

producer producer




Kafka Architecture

- Communication between all nodes based on high performance
simple binary API over TCP

 Runs on as a cluster of brokers which is a one or more servers
in this case

» High performance low level APIs for producer/consumer

« REST API via Kafka REST Proxy
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Topics & Partitions

Anatomy of a Topic

Partition 111:
0 ol1|2|ala|s|e|7|8|9

0’2:\
Partiion 1414 12]3lals|e|7|slo; =
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Oid » New

« ATopic is a category or feed name to which messages are published.
» Each topic separated to partitioned log where messages are kept.

- Partitions are replicated and distributed across the Kafka cluster for high
availability and fault tolerance.
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Partition

10001
10002
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10006 ‘y consumer
Send
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« Multiple consumers can read from same topic on their own pace

» Messages are kept on log for predefined period of time

« Consumer maintain the message offset




Partition

producer

Send

v Write

» Consumers can go away
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Partition

producer

Send

Write

« and come back
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« Read
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Read
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Kafka Architecture

producer producer




Consumers and Consumer Groups

Kafka addresses 2 traditional messaging models
» Queuing

o Publish-subscribe

using “consumer group”, a single consumer abstraction

—Kafka Cluster
Server 1 Server 2

PO || P3 P1 || P2

A 4 A
C3 C4 C5 Cé6

C1

Consumer Group A Consumer Group B———
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Consumers and Consumer Groups
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Consumers and Consumer Groups

Topic

Partition O Partition O

1
COI"\CI TaaY=Ya
¢ Consumer
onsumer

Consumer Group B

Consumer Group A




Message order and parallelism

TRADITIONAL QUEUE

* Retain messages in-order and handover to consumer in-order.

* Message order is not guaranteed when it’s come to parallel processing unless it’s a
exclusive consumer per queue.

KAFKA WAY - THE PARTITION

* Partition on topics

* Partition is assigned to a consumer group so that each portion consumed by a single
consumer in consumer group.

* Message order guaranteed on partition basis
* Message key can be used to order explicitly (consumer)

* One consumer instance per partition within the consumer group
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Replication

« Each portion of a topic has a 1 leader and 0 or more replicas

* Partitions are selected “round-robin” to balance the load unless it is
required to maintain the order

 Leader handles all writes to the partition

Server1 Server1 Server1
a0 A0 "A0
A1’ A A:1
B:0 h B:0 Controller
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Durability and throughput

* Durability can be configured on producer level

* Durability ~ Throughput

* ISR - group of in-sync replicas for a partition

Highest ACK all ISRs have received Highest
Medium ACK once the leader has received Medium
Lowest No ACK required Lowest
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Durability and throughput
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Use case - LinkedIn

Traditional jerry-rigged pipped architecture

Source: LinkedIn
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Use case - LinkedIn

Relational

DWH

B

Apps
S KAFKA:
Stream °
e e
RDBMS *—o Data o
Platform
S I Stream
Processing Map
NoSQL Reduce
Realtime
Analytics
Synchronous
Reqg/Response Near realtime data Offline batch data
-
0-100s ms > 100s ms > 1 hour
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Source: LinkedIn
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Use case - LinkedIn

Stream-centric data architecture

N | B | BN | -

Monitorng < i

Data -+
Sacy \
Security & <1 Platform

» A ~
Fraud | Samza

<>
Real-tme -
-+

Analytics

Hadoop L Teradata ]
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What is Stream Processing?

CARTOONSTOCK
.com

“I'm having trouble
streaming.”
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Stream Processing

Stream processing is a
generalisation of Batch processing
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Stream Processing

Input Kafka
Topic

Transform

A 4

AN

Transform

Transform

Transform Intermediate
Kafka Topic

Transform

Output Kafka
Topic

Transform

cat input | grep “foo” | wc

Data Store

Consumer




Stream Processing with Kafka
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Spark

Data-Parallel computation
Micro batch processing
APIs in Java, Scala, Python
In-memory storage

Cluster Manager
Mesos / YARN

2N

executor

oxocutor

task task task task

cache cache

executor *XOTUAOT
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Storm

« Even-Parallel computation

« One-at-a-time processing

« Micro batch processing is possible with Trident

« APIs in Java, Scala, Python, Clojure, Ruby, etc
 Suitable for processing complex event data

« Transform unstructured data in to desired format

Nimbus
Bolt
ZooKeeper . ZooKeeper A
Bolt

/ l \ Spout tunls ' -

Supemisor Supemisor t Bolt
—

'.'uCt'kC' 'v'-l:(k':"
executor l =M executor

' ‘ Spout
tlask| task task task

APACHE
worker nodes STORM
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Samza

One-at-a-time processing

Based on messages and partitions

APls in Java, Scala

Suitable for processing large amount od data

Samza Job Partitioned Stream
Enpéj — Kafka
Stream '
= ro
partition 0 1 |

"

YARN L.
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Ty
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“Remember, the other team is
counting on Big Data insights based
on previous games. So, kick
the ball with your other foot.”
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