~
O N
oN

PTEMBER 17

About Me

Melanga Dissanayake
Senior Software Engineer - EPAM System (Shenzhen)

* Over 10 years of enterprise application development experience

* Focused on financial domain

<gpam> | y

Big data is like teenage sex:
everyone talks about it,
nobody knows how to do it,
everyone thinks everyone else is
doing it, so everyone claims they
are doing it...

(Dan Ariely)

<gpam> | 3

What is Big Data?

<gpam> | 4

What is Big Data?

Volume

» Petabytes
e Records

e Transactions
e Tables, files

o Structured
e Unstructured

e Semi structured
o All the above

e Batch
e Near Time
e Real Time
e Streams

Velocity

<gpam> | 5

Variety

What is Big Data?

* Traditional Queue

» Website Activity Tracking
* Metrics - Operational data
+ Log Aggregation

 Stream Processing

* Event Sourcing

« Commit Log

<gpam> | 6

Where do we put Big Data?

* Traditional Database?

 Flat files?

<gpam> | 7

HDFS

« HDFS - Hadoop Distributed File System
- Highly fault-tolerant
- Java based file system
* Runs on commodity hardware

 Concurrent data access (Coordinated by YARN)

<gpam> | 8

How do we put these Big Data
« CSV file dump

* ETL
* Other messaging systems (ActiveMQ, RabbitMQ, etc)

<gpam> | 9

Data pipeliens

Client »| Backend

Data pipeline starts like this

Source: Cloudera

<gpam> | 10

Data pipeliens

Client Backend

Client

Then we reuse them
Client

Client

Source: Cloudera

epam> | 11

Data pipeliens

Client Backend

Client Backend

Then we add more backends
Client

Client

Source: Cloudera

<gpam> | 12

Data pipeliens

Client Backend
Client Backend
Client Backend
Client Backend

Then it starts to look like this

Source: Cloudera

<gpam> | 13

Data pipeliens

Client Backend
Client Backend
Client Backend
Client Backend

with may be some of this

Source: Cloudera

epams> 14

Data pipeliens

ended up having

Source: LinkedIn

<epam> | 15

What is Apache Kafka

&3 kafka

Apache Kafka is an open-source message broker rethought
as a distributed commit log.

Developed using Scala and heavily influenced by transaction
logs.

<gpam> | 16

Little bit of history

Apache Kafka was initially developed by Linked[f}] to pipeline
the data across various internal systems.

Developed as a an internal project in early 2011 project was
released under open-source license.

Graduated from Apache Incubator on October 2012.

epam> | 17

Kafka in nutshell

producer producer producer

kafka
cluster

consumer consumer consumer

Kafka Architecture

producer producer

Kafka Architecture

- Communication between all nodes based on high performance
simple binary API over TCP

 Runs on as a cluster of brokers which is a one or more servers
in this case

» High performance low level APIs for producer/consumer

« REST API via Kafka REST Proxy

epam> | 20

Topics & Partitions

Anatomy of a Topic

Partition 111:
0 ol1|2|ala|s|e|7|8|9

0’2:\
Partiion 1414 12]3lals|e|7|slo; =

1

) M /'Vmes
| -l
ape '
Partition 0 111§1 :

2 0]1]2

Oid » New

« ATopic is a category or feed name to which messages are published.
» Each topic separated to partitioned log where messages are kept.

- Partitions are replicated and distributed across the Kafka cluster for high
availability and fault tolerance.

epam>

21

Partition

10001
10002
producer 10003
10004
10005
10006 ‘y consumer
Send
10007
10008
Read
v 10009 <

. A— : Write consumer
: ' 10010

Read consumer

—
oS
S
-
S
\ 4

« Multiple consumers can read from same topic on their own pace

» Messages are kept on log for predefined period of time

« Consumer maintain the message offset

Partition

producer

Send

v Write

» Consumers can go away

\ 4

10001
10002
10003
10004
10005
10006
10007
10008
10009
10010

Read

Read

consumer

consumer

Partition

producer

Send

Write

« and come back

\ 4

10001
10002
10003
10004
10005
10006
10007
10008
10009
10010

Read consumer
« Read
consumer
Read
consumer

Kafka Architecture

producer producer

Consumers and Consumer Groups

Kafka addresses 2 traditional messaging models
» Queuing

o Publish-subscribe

using “consumer group”, a single consumer abstraction

—Kafka Cluster
Server 1 Server 2

PO || P3 P1 || P2

A 4 A
C3 C4 C5 Cé6

C1

Consumer Group A Consumer Group B———

<gpam> | 26

Consumers and Consumer Groups

<gpam> | 27

Consumers and Consumer Groups

Topic

Partition O Partition O

1
COI"\CI TaaY=Ya
¢ Consumer
onsumer

Consumer Group B

Consumer Group A

Message order and parallelism

TRADITIONAL QUEUE

* Retain messages in-order and handover to consumer in-order.

* Message order is not guaranteed when it’s come to parallel processing unless it’s a
exclusive consumer per queue.

KAFKA WAY - THE PARTITION

* Partition on topics

* Partition is assigned to a consumer group so that each portion consumed by a single
consumer in consumer group.

* Message order guaranteed on partition basis
* Message key can be used to order explicitly (consumer)

* One consumer instance per partition within the consumer group

<epam> | 29

Replication

« Each portion of a topic has a 1 leader and 0 or more replicas

* Partitions are selected “round-robin” to balance the load unless it is
required to maintain the order

 Leader handles all writes to the partition

Server1 Server1 Server1
a0 A0 "A0
A1’ A A:1
B:0 h B:0 Controller

epam>

30

Durability and throughput

* Durability can be configured on producer level

* Durability ~ Throughput

* ISR - group of in-sync replicas for a partition

Highest ACK all ISRs have received Highest
Medium ACK once the leader has received Medium
Lowest No ACK required Lowest

epam> | 31

Durability and throughput

Partitio
n:
Leader

0
100
101,102

Producer

mtio
n:

Leader

1
101
100,102

ISR-

Partitio
n:

102
101,100

Léader

ISR:
cloudera

Broker 100

Broker 101

Topic: my_topic
Partition 3
S: 3
Repicas
0
1

Broker 102

0 inc AR g s rees rved

Use case - LinkedIn

Traditional jerry-rigged pipped architecture

Source: LinkedIn

epam> | 33

Use case - LinkedIn

Relational

DWH

B

Apps
S KAFKA:
Stream °
e e
RDBMS *—o Data o
Platform
S I Stream
Processing Map
NoSQL Reduce
Realtime
Analytics
Synchronous
Reqg/Response Near realtime data Offline batch data
-
0-100s ms > 100s ms > 1 hour

<epam>

Source: LinkedIn

34

Use case - LinkedIn

Stream-centric data architecture

N | B | BN | -

Monitorng < i

Data -+
Sacy \
Security & <1 Platform

» A ~
Fraud | Samza

<>
Real-tme -
-+

Analytics

Hadoop L Teradata]

epam> | 35

Source: LinkedIn

<epam>

What is Stream Processing?

CARTOONSTOCK
.com

“I'm having trouble
streaming.”

36

Stream Processing

Stream processing is a
generalisation of Batch processing

epam> | 37

Stream Processing

Input Kafka
Topic

Transform

A 4

AN

Transform

Transform

Transform Intermediate
Kafka Topic

Transform

Output Kafka
Topic

Transform

cat input | grep “foo” | wc

Data Store

Consumer

Stream Processing with Kafka

Spofl’g

- Otream
% + m ~ Processing

52) STORM

Spark

Data-Parallel computation
Micro batch processing
APIs in Java, Scala, Python
In-memory storage

Cluster Manager
Mesos / YARN

2N

executor

oxocutor

task task task task

cache cache

executor *XOTUAOT

LAsK Lask task | task

cache cache

worker nodes

RDD RDOD RDD

%ﬁ:ﬁ:r[n-- @ time 1 @tme2 || @time 3
l operations | |
4 ¥

DStream--| G| || gumez || @umes

window-based operation

window

DStream - - @ time 3

Windowed

Spaﬁ?

Streaming

>

Storm

« Even-Parallel computation

« One-at-a-time processing

« Micro batch processing is possible with Trident

« APIs in Java, Scala, Python, Clojure, Ruby, etc
 Suitable for processing complex event data

« Transform unstructured data in to desired format

Nimbus
Bolt
ZooKeeper . ZooKeeper A
Bolt

/ l \ Spout tunls ' -

Supemisor Supemisor t Bolt
—

'.'uCt'kC' 'v'-l:(k':"
executor l =M executor

' ‘ Spout
tlask| task task task

APACHE
worker nodes STORM

epam> | 41

Samza

One-at-a-time processing

Based on messages and partitions

APls in Java, Scala

Suitable for processing large amount od data

Samza Job Partitioned Stream
Enpéj — Kafka
Stream '
= ro
partition 0 1 |

"

YARN L.
01234 6780\

Ty
- g
Task partition 1 : PR .::
Ej 01234567 /
T ™)
partition 2 : '
0123456178
Output Changelog = Old > Now

Stream Stream

5 EBH

“Remember, the other team is
counting on Big Data insights based
on previous games. So, kick
the ball with your other foot.”

<gpam> | 43

