
Melanga Dissanayake

SEPTEMBER 17, 2015

 Apache Kafka

 About Me

2

Melanga Dissanayake

Senior Software Engineer - EPAM System (Shenzhen)

• Over 10 years of enterprise application development experience

• Focused on financial domain

3

Big data is like teenage sex:
everyone talks about it,

nobody knows how to do it,
everyone thinks everyone else is
doing it, so everyone claims they

are doing it…
(Dan Ariely)

4

 What is Big Data?

5

 What is Big Data?

3Vs

• Petabytes
• Records
• Transactions
• Tables, files

• Batch
• Near Time
• Real Time
• Streams

• Structured
• Unstructured
• Semi structured
• All the above

Volume

Velocity Variety

 What is Big Data?

6

• Traditional Queue

• Website Activity Tracking

• Metrics - Operational data

• Log Aggregation

• Stream Processing

• Event Sourcing

• Commit Log

 Where do we put Big Data?

7

• Traditional Database?

• Flat files?

 HDFS

8

• HDFS - Hadoop Distributed File System

• Highly fault-tolerant

• Java based file system

• Runs on commodity hardware

• Concurrent data access (Coordinated by YARN)

 How do we put these Big Data

9

• CSV file dump

• ETL

• Other messaging systems (ActiveMQ, RabbitMQ, etc)

 Data pipeliens

Data pipeline starts like this

10

Source: Cloudera

Client Backend

 Data pipeliens

Then we reuse them

11

Source: Cloudera

Client Backend

Client

Client

Client

 Data pipeliens

Then we add more backends

12

Source: Cloudera

Client Backend

Client

Client

Client

Backend

 Data pipeliens

Then it starts to look like this

13

Source: Cloudera

Client Backend

Client

Client

Client

Backend

Backend

Backend

 Data pipeliens

with may be some of this

14

Source: Cloudera

Client Backend

Client

Client

Client

Backend

Backend

Backend

 Data pipeliens

ended up having

15

Source: LinkedIn

 What is Apache Kafka

Apache Kafka is an open-source message broker rethought
as a distributed commit log.

Developed using Scala and heavily influenced by transaction
logs.

16

 Little bit of history

Apache Kafka was initially developed by to pipeline
the data across various internal systems.

Developed as a an internal project in early 2011 project was
released under open-source license.

Graduated from Apache Incubator on October 2012.

17

18

 Kafka in nutshell

producerproducer producer

consumer consumer consumer

kafka
cluster

19

 Kafka Architecture

consumer

broker broker

Zookeeper

consumer

broker broker

producer producer

 Kafka Architecture

• Communication between all nodes based on high performance
simple binary API over TCP

• Runs on as a cluster of brokers which is a one or more servers
in this case

• High performance low level APIs for producer/consumer

• REST API via Kafka REST Proxy

20

 Topics & Partitions

• A Topic is a category or feed name to which messages are published.

• Each topic separated to partitioned log where messages are kept.

• Partitions are replicated and distributed across the Kafka cluster for high
availability and fault tolerance.

21

 Partition

22

10001

10002

10003

10004

10005

10006

10007

10008

10009

10010

producer

Send

10010
Write

consumer

consumer

consumer

• Multiple consumers can read from same topic on their own pace

• Messages are kept on log for predefined period of time

• Consumer maintain the message offset

Read

Read

Read

 Partition

• Consumers can go away

23

10001

10002

10003

10004

10005

10006

10007

10008

10009

10010

producer

Send

10010
Write

consumer

consumer

Read

Read

 Partition

24

10001

10002

10003

10004

10005

10006

10007

10008

10009

10010

producer

Send

10010
Write

consumer

consumer

consumer

• and come back

Read

Read

Read

25

 Kafka Architecture

consumer

broker broker

Zookeeper

consumer

broker broker

producer producer

 Consumers and Consumer Groups

Kafka addresses 2 traditional messaging models

• Queuing

• Publish-subscribe

using “consumer group”, a single consumer abstraction

26

27

 Consumers and Consumer Groups

28

 Consumers and Consumer Groups

Consumer Group A

Consumer
Consumer

Consumer Group B

Consumer

Partition 0 Partition 0 ……………………………………………

Topic

29

 Message order and parallelism

• Retain messages in-order and handover to consumer in-order.

• Message order is not guaranteed when it’s come to parallel processing unless it’s a

exclusive consumer per queue.

• Partition on topics

• Partition is assigned to a consumer group so that each portion consumed by a single

consumer in consumer group.

• Message order guaranteed on partition basis

• Message key can be used to order explicitly (consumer)

• One consumer instance per partition within the consumer group

TRADITIONAL QUEUE

KAFKA WAY - THE PARTITION

30

 Replication

• Each portion of a topic has a 1 leader and 0 or more replicas

• Partitions are selected “round-robin” to balance the load unless it is
required to maintain the order

• Leader handles all writes to the partition

Server1 Server1 Server1

A:0

A:1

B:0

A:0

A:1

B:0

A:0

A:1

Controller

31

 Durability and throughput

• Durability can be configured on producer level

• Durability ~ Throughput

• ISR - group of in-sync replicas for a partition

Durability Behaviour Per Event Latency

Highest ACK all ISRs have received Highest

Medium ACK once the leader has received Medium

Lowest No ACK required Lowest

32

 Durability and throughput

33

 Use case - LinkedIn

Source: LinkedIn

Traditional jerry-rigged pipped architecture

34

 Use case - LinkedIn

Source: LinkedIn

35

 Use case - LinkedIn

Source: LinkedIn

Stream-centric data architecture

36

What is Stream Processing?

 Stream Processing

37

Stream processing is a
generalisation of Batch processing

 Stream Processing

38

Transform

Transform

Transform

Intermediate
Kafka Topic

Transform

Transform

Transform

Output Kafka
Topic

Data Store

Consumer

Input Kafka
Topic

cat input | grep “foo” | wc

 Stream Processing with Kafka

39

+ = Stream
Processing

 Spark

40

• Data-Parallel computation
• Micro batch processing
• APIs in Java, Scala, Python
• In-memory storage

 Storm

41

• Even-Parallel computation
• One-at-a-time processing
• Micro batch processing is possible with Trident
• APIs in Java, Scala, Python, Clojure, Ruby, etc
• Suitable for processing complex event data
• Transform unstructured data in to desired format

 Samza

42

• One-at-a-time processing
• Based on messages and partitions
• APIs in Java, Scala
• Suitable for processing large amount od data

43

