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Melanga Dissanayake 

Senior Software Engineer - EPAM System (Shenzhen) 

• Over 10 years of enterprise application development experience 

• Focused on financial domain
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Big data is like teenage sex: 
everyone talks about it, 

nobody knows how to do it, 
everyone thinks everyone else is 
doing it, so everyone claims they 

are doing it…
(Dan Ariely)
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  What is Big Data?
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  What is Big Data?

3Vs

• Petabytes 
• Records 
• Transactions 
• Tables, files

• Batch 
• Near Time 
• Real Time 
• Streams

• Structured 
• Unstructured 
• Semi structured 
• All the above

Volume

Velocity Variety



  What is Big Data?
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• Traditional Queue 

• Website Activity Tracking 

• Metrics - Operational data 

• Log Aggregation 

• Stream Processing 

• Event Sourcing 

• Commit Log



  Where do we put Big Data?
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• Traditional Database? 

• Flat files?



  HDFS
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• HDFS - Hadoop Distributed File System 

• Highly fault-tolerant 

• Java based file system 

• Runs on commodity hardware 

• Concurrent data access (Coordinated by YARN) 



  How do we put these Big Data
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• CSV file dump 

• ETL 

• Other messaging systems (ActiveMQ, RabbitMQ, etc)



  Data pipeliens

Data pipeline starts like this
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Source: Cloudera

Client Backend



  Data pipeliens

Then we reuse them
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Source: Cloudera

Client Backend

Client

Client

Client



  Data pipeliens

Then we add more backends
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Source: Cloudera

Client Backend

Client

Client

Client

Backend



  Data pipeliens

Then it starts to look like this
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Source: Cloudera

Client Backend

Client

Client

Client

Backend

Backend

Backend



  Data pipeliens

with may be some of this
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Source: Cloudera

Client Backend

Client

Client

Client

Backend

Backend

Backend



  Data pipeliens

ended up having
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Source: LinkedIn



  What is Apache Kafka

Apache Kafka is an open-source message broker rethought 
as a distributed commit log. 

Developed using Scala and heavily influenced by transaction 
logs.
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  Little bit of history

Apache Kafka was initially developed by                   to pipeline 
the data across various internal systems. 

Developed as a an internal project in early 2011 project was 
released under open-source license. 

Graduated from Apache Incubator on October 2012.
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  Kafka in nutshell

producerproducer producer

consumer consumer consumer

kafka 
cluster
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  Kafka Architecture

consumer

broker broker

Zookeeper

consumer

broker broker

producer producer



  Kafka Architecture

• Communication between all nodes based on high performance 
simple binary API over TCP 

• Runs on as a cluster of brokers which is a one or more servers 
in this case 

• High performance low level APIs for producer/consumer 

• REST API via Kafka REST Proxy
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  Topics & Partitions

• A Topic is a category or feed name to which messages are published. 

• Each topic separated to partitioned log where messages are kept. 

• Partitions are replicated and distributed across the Kafka cluster for high 
availability and fault tolerance.
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  Partition
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10001

10002

10003

10004

10005

10006

10007

10008

10009

10010

producer

Send

10010
Write

consumer

consumer

consumer

• Multiple consumers can read from same topic on their own pace 

• Messages are kept on log for predefined period of time 

• Consumer maintain the message offset

Read

Read

Read



  Partition

• Consumers can go away
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  Partition
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• and come back

Read

Read

Read
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  Kafka Architecture

consumer

broker broker

Zookeeper

consumer

broker broker

producer producer



  Consumers and Consumer Groups

Kafka addresses 2 traditional messaging models 

• Queuing 

• Publish-subscribe 

using “consumer group”, a single consumer abstraction
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  Consumers and Consumer Groups
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  Consumers and Consumer Groups

Consumer Group A

Consumer
Consumer

Consumer Group B

Consumer

Partition 0 Partition 0 ……………………………………………

Topic
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  Message order and parallelism

• Retain messages in-order and handover to consumer in-order. 

• Message order is not guaranteed when it’s come to parallel processing unless it’s a 

exclusive consumer per queue. 

• Partition on topics 

• Partition is assigned to a consumer group so that each portion consumed by a single 

consumer in consumer group. 

• Message order guaranteed on partition basis 

• Message key can be used to order explicitly (consumer) 

• One consumer instance per partition within the consumer group 

TRADITIONAL QUEUE

KAFKA WAY - THE PARTITION
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  Replication

• Each portion of a topic has a 1 leader and 0 or more replicas  

• Partitions are selected “round-robin” to balance the load unless it is 
required to maintain the order 

• Leader handles all writes to the partition

Server1 Server1 Server1

A:0

A:1

B:0

A:0

A:1

B:0

A:0

A:1

Controller
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  Durability and throughput

• Durability can be configured on producer level 

• Durability ~ Throughput 

• ISR - group of in-sync replicas for a partition

Durability Behaviour Per Event Latency

Highest ACK all ISRs have received Highest

Medium ACK once the leader has received Medium

Lowest No ACK required Lowest
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  Durability and throughput
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  Use case - LinkedIn

Source: LinkedIn

Traditional jerry-rigged pipped architecture 
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  Use case - LinkedIn

Source: LinkedIn
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  Use case - LinkedIn

Source: LinkedIn

Stream-centric data architecture 
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What is Stream Processing?



  Stream Processing
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Stream processing is a 
generalisation of Batch processing



  Stream Processing
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Transform

Transform

Transform

Intermediate 
Kafka Topic

Transform

Transform

Transform

Output Kafka 
Topic

Data Store

Consumer

Input Kafka 
Topic

cat input | grep “foo” | wc



  Stream Processing with Kafka
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+ = Stream 
Processing



  Spark
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• Data-Parallel computation 
• Micro batch processing 
• APIs in Java, Scala, Python 
• In-memory storage



  Storm
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• Even-Parallel computation 
• One-at-a-time processing 
• Micro batch processing is possible with Trident  
• APIs in Java, Scala, Python, Clojure, Ruby, etc 
• Suitable for processing complex event data 
• Transform unstructured data in to desired format



  Samza
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• One-at-a-time processing 
• Based on messages and partitions 
• APIs in Java, Scala 
• Suitable for processing large amount od data
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